If it's not what You are looking for type in the equation solver your own equation and let us solve it.
7x^2-225=0
a = 7; b = 0; c = -225;
Δ = b2-4ac
Δ = 02-4·7·(-225)
Δ = 6300
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{6300}=\sqrt{900*7}=\sqrt{900}*\sqrt{7}=30\sqrt{7}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-30\sqrt{7}}{2*7}=\frac{0-30\sqrt{7}}{14} =-\frac{30\sqrt{7}}{14} =-\frac{15\sqrt{7}}{7} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+30\sqrt{7}}{2*7}=\frac{0+30\sqrt{7}}{14} =\frac{30\sqrt{7}}{14} =\frac{15\sqrt{7}}{7} $
| x^2+500x-25000=0 | | 6y-3+10-3y=2y-5+4y | | −9(x−63)=x+49 | | 2(5x+7)-12=30 | | (x+2)2+2(x-1)=(x-4)(x-1) | | 2^x.5=37 | | 2x.5=37 | | 4x²=8x-9 | | 14-24=-3x+6+4× | | 2/3x-8=30 | | -x/4=x/5 | | (2x^2)-2x+122=0 | | 4x²+8-9=0 | | -3x+6+4×=14-24 | | 14x-12-x-4=96 | | 6z=3z-10+2z | | +x^2-14x+3=0 | | x=9*3 | | 4x2+8x-9=0 | | A^3+5=A/316a^2 | | 3x/10=7x/8 | | 3x/10=7x/8-23 | | x^2=653^2 | | 11m-2=30 | | 2/5(7/8-4x)-7/8=1/8 | | -16=3y+3 | | (x+x)=4-6x | | -.5n-9=-.5n+.75 | | 3-11/n=-10/n^2 | | 2160=(24000)0.03t | | (x*8.25)+x=369 | | 15r2=3r |